Mississippi Lake hydrodynamic and biogeochemical modeling project

Report #2

date: March 26th 2018

The following steps toward hydrodynamic and biogeochemical modeling of Mississippi Lake have

been completed since the previous report (Dated December 5th, 2017):

The hydrodynamic model has been set up and since there was no flow data for the creeks,

different scenarios have been considered to estimate the total flow for the creeks as a

percentage of the total inflow of the Mississippi River (based on Ferguson Falls flow data).

The modeled and observed water level were then compared and the lowest error resulted

from assigning 8% and 6% of the River inflow to the creeks in 2017 and 2016, respectively

(Figure 1). Afterwards, the total estimated inflow for creeks was distributed based on the

percentage of watershed area of each creek to total area of all creek's watersheds.

> The data from existing temperature loggers were then used to compare and validate the

modeled data which shows a good agreement between those two (Figure 2). For the final

report the errors will be measured with a numerical index to have a more extensive

understanding of the accuracy of the model (e.g., RMSE, R²).

The water quality model was set up and different water quality characteristics of the

inflows (for both the River and the creeks) and the required boundary condition of the

model has been given to the model. The preliminary (no calibration) output shows

promising results (Figure 3, Figure 4, Figure 5, Figure 6; only visual examination). The

next step will be calibrating the water quality model and then proceeding to setting up the

appropriate scenarios.

Nader Nakhaei, Ph.D.

1

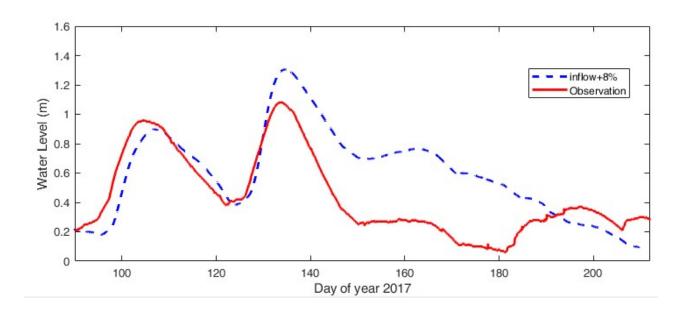


Figure 1- Comparing the observed and modeled (best scenario 8% for 2017) water level.

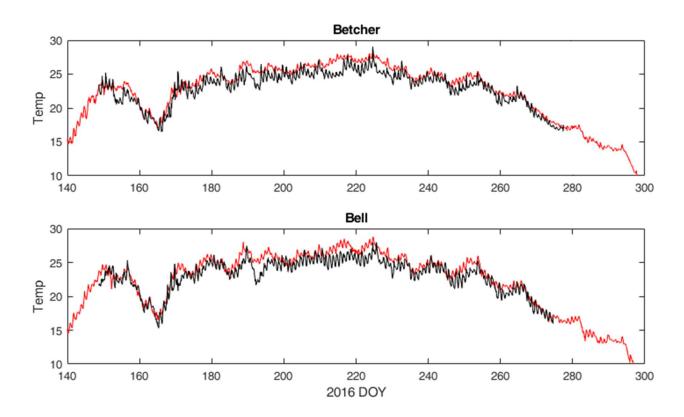


Figure 2- Modeled and observed temperature loggers (near Betcher and Bell properties in 2016).

Red is modeled and black is the observation.

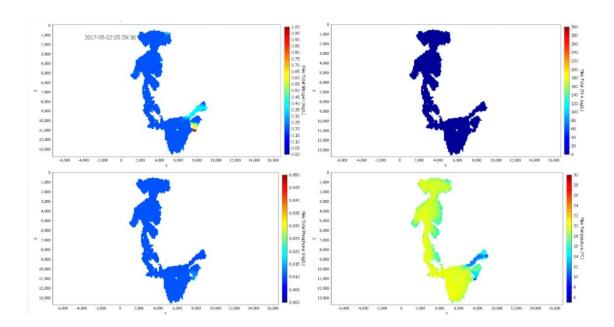


Figure 3- Mississippi Lake modeling results (water column averaged) on May 2nd, 2017. Panels: up left is Total Nitrogen, up right is Total chlorophyll a, down left is Total phosphorus and down right is the temperature.

Figure 4- Mississippi Lake modeling results (water column averaged) on June 2nd, 2017. Panels: up left is Total Nitrogen, up right is Total chlorophyll a, down left is Total phosphorus and down right is the temperature.

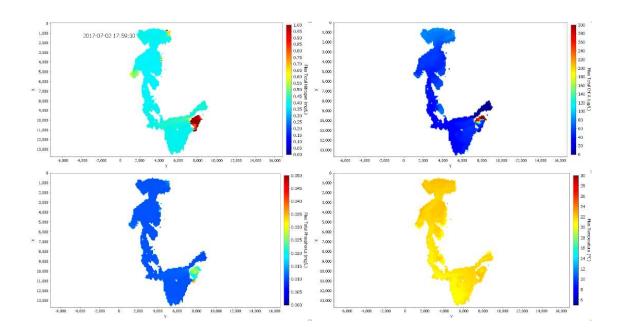


Figure 5- Mississippi Lake modeling results (water column averaged) on July 2nd, 2017. Panels: up left is Total Nitrogen, up right is Total chlorophyll a, down left is Total phosphorus and down right is the temperature.

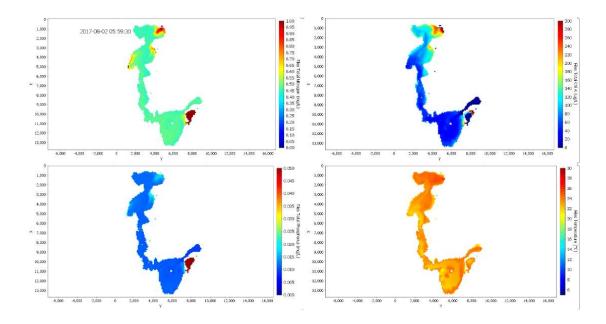


Figure 6- Mississippi Lake modeling results (water column averaged) on August 2nd, 2017. Panels: up left is Total Nitrogen, up right is Total chlorophyll a, down left is Total phosphorus and down right is the temperature.